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Abstract

An ability to determine the atomic number of a material in a cargo
container would be helpful in interdicting smuggled nuclear materials.
This paper examines two processes by which high energy photons inter-
act with matter; Compton scattering and pair production. The ratio of
the number of photons which originate from the annihilation of positrons
resulting from pair production and the number of photons coming from
Compton scattering gives a good indication of atomic number. At large
angles relative to an incident beam — i.e. backscattered, there is good
separation in energy between Compton scattered photons and photons
from positron annihilations. This ratio can then be cleanly determined in
order to estimate atomic number.

1 INTRODUCTION

High energy photons incident on a material can interact with the material
through any of numerous processes a few of which result in secondary photons
that can then be detected. Two such processes are Compton scattering and pair
production, the photons in the latter case coming from positron annihilations
and having an energy equal to the mass of the electron me.

In this paper, we consider the outgoing photons from these two processes
at large angles (i.e. backscattered) to an incident beam of photons from a
bremsstrahlung source and construct a metric by which the atomic number Z
of the target material might be estimated.

The ultimate design will no doubt include a forward detector which counts
the direct shine from the source after passing through the object of interest.
The information from this detector was not considered in this study.

∗Corresponding author. Lawrence Livermore National Laboratory, 7000 East Ave., L-186,
Livermore, CA 94550. Tel.: 925-423-7364. E-mail: walston2@llnl.gov
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Figure 1: One of the Feynman diagrams for Compton scattering.

2 COMPTON SCATTERING

Compton scattering is the inelastic scattering of a photon from an electron,
as shown in Fig. 1. The electron recoils while the scattered photon emerges
with correspondingly less energy. The differential cross section for Compton
scattering from a single free electron through an angle θS can be calculated
from the well-known Klein-Nishina formula,

dσKN

dΩ
= Zr2e

1[
1 + E0

me
(1− θS)

]2
1 + cos2 θS +

(
E0
me

)2

(1− cos θS)2

1 + E0
me

(1− cos θS)

 (1)

By integrating this over the solid angle dΩ, one obtains the Klein-Nishina total
cross section for Compton scattering from a single free electron,

σKN = 2πZr2e
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me

)2
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me

)
1 + 2E0

me

− me

E
log
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1 + 2
E0

me

)

+
me

2E
log
(

1 + 2
E0

me

)
−

1 + 3E0
me(

1 + 2E0
me

)2

 (2)

The energy of the scattered photon is

ES =
E0

1 + E0
me

(1− cos θS)
(3)

At photon energies below ∼ 1 MeV, scattering from a free electron is some-
what different from scattering from an electron that is bound in an atom because
the binding energy of the electron is no longer negligible compared to the photon
energy. The net effect is that the cross section turns over and then falls off as
photon energy decreases. However, in the low energy limit, the Klein-Nishina
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Figure 2: Comparison of the Klein-Nishina total cross section for Compton
scattering, Eq. 2, to data from the EPDL97 database for selected elements.

formula converges to

lim
E0≪me

σKN → 2πZr2e

(
4
3
− 8

3
E0

me

)
(4)

to first order in E0/me, as can be seen by expanding each of the terms in Eq. 2
in a power series. The difference in the behavior of the Klein-Nishina formula at
low energy from the measured Compton scattering cross sections is illustrated
in Fig. 2.

To compute a reasonable estimate for the differential cross section for Comp-
ton scattering, it is necessary to multiply Eq. 1 by a correction factor,

dσC

dΩ
=

(
σEPDL97

σKN

)
dσKN

dΩ
(5)

where σEPDL97 is interpolated from entries for Compton scattering in the EPDL97
database and σKN is computed from Eq. 2.

3 PAIR PRODUCTION

For photon energies above 2me, the photon can create an e+e− pair in the
electromagnetic field of a nucleus or other charged particle, as shown in Fig. 3.
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Figure 3: The most significant Feynman diagram for pair production.

The nucleus (or other charged particle) recoils in order to conserve both energy
and momentum.

The cross section for pair production can be calculated from the very cum-
bersome Bethe-Heitler formula [1], or more empirically by interpolating between
the data points in the EPDL97 database which includes contributions from both
the nucleus and the orbiting electrons. This is shown in Fig. 4. The latter
method ignores the angular dependences in the Bethe-Heitler formula, but is
nonetheless sufficient here because we are ultimately interested not in the e+e−

pair itself but in the photons of energy me created by the annihilation of the e+.
The process of e+e− annihilation has no angular dependence and the outgoing
photons can be taken as evenly distributed in 4π. Thus, the differential cross
section for a photon resulting from pair production going into solid angle dΩ is

dσpp

dΩ
=

σpp

4π
(6)

4 BREMSSTRAHLUNG SOURCE

An approximate analytic formula for the bremsstrahlung spectrum was devel-
oped on the basis of theoretical arguments by Y. S. Tsai and Van Whitis [2].
Their formula is known to be satisfactory for photon energies down to 20% of
the incident electron’s energy, E0 ≥ 0.2Ee, but tends to overestimate for smaller
values of E0 and diverges in the infrared limit. Multiplying their formula by an
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Figure 4: Cross section for pair production as a function of energy from the
EPDL97 database for selected elements.
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Figure 5: Comparison of the bremsstrahlung spectrum formula of Eqs. 7-10 for
an endpoint energy Ee = 9 MeV to a simulation from GEANT 4. Both assumed
a target thickness t = 1 radiation length and energy bins dE0 = 200 keV.

empirically-based correction factor C,

dI(t, Ee, E0) =
dE0

E0

(
1− E0

Ee

) 4
3 t − e− 7

9 t

7
9 + 4

3 ln
(

1− E0
Ee

) × C (7)

where Ee is the energy of the incident electron, E0 is the energy of the photon,
and t is the target thickness, gives reasonably good agreement over all energies,
as illustrated in Fig. 5 which shows the specific case where Ee = 9 MeV. The
functional form of the correction factor C [3] is

C =



A× B E0 ≤ 3
2E
′

B 3
2E
′ < E0 < 0.2Ee

1 E0 ≥ 0.2Ee

(8)
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where

A =
1
2

[
1− cos

(
2πE0

3E′

)]
(9)

B =

[
1− e−

E0
E′

1− exp
(
E0−2×0.2Ee

E′

)]2

(10)

E′ = 0.04× Ee (11)

For E0 ≥ 0.2Ee, the formula returns the result of Y. S. Tsai and Van Whitis.

5 BACKSCATTERED FLUX

Consider a slab of arbitrary thickness composed of an element with atomic
number Z: An incident photon of energy E0 from a bremsstrahlung source
penetrates this slab to a certain depth x, and between x and x + dx interacts
via either the Compton scattering or pair production processes. The resulting
photon with energy ES emerges from the slab on the same side from which it
entered and gets detected by a finite size detector located at an angle δ relative
to the incident beam and subtending a solid angle of dΩ as viewed from the
interaction point. Because independent probabilities multiply, the probability
for this to happen is the product of the following probabilities:

• dPsrc = probability for the source to emit a γ between E0 and E0 + dE0

• Pin = probability for the γ to go a depth x in the material

• dPint = probability for the γ to interact between x and x + dx and for
the scattered γ to be headed in the direction of a detector that subtends
a solid angle dΩ

• Pout = probability that the scattered γ exits the material

The probability dPsrc depends on the energy spectrum of the source and is
equal to dI from Eqs. 7-10.

The probability Pin = e−ρσ(E0)x depends on the distance x that the photon
must travel through the material to get to the interaction point and on the total
interaction cross section σ (E0) corresponding to the incident photon’s energy.
The probability Pout = e−ρσ(ES)x′

depends on the distance x′ = x/ cos δ the
scattered photon must travel through the material to get out to the detector
and on the total interaction cross section σ (ES) corresponding to the scattered
photon’s energy. The total cross section vs. energy for selected Z is shown in
Fig. 6.

For Compton scattering, the probability dPint = ρ dσC (E0) dx where the
scattered photon emerges such that the scattering angle θS in Eq. 1 corresponds
to the direction of the detector. To calculate the flux of photons from Compton
scattering that reaches the detector, we must integrate the product of these
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Figure 6: Total interaction cross section as a function of energy from the
EPDL97 database for selected elements.
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probabilities over x for the thickness of the material and over the spectrum of
incident photon energies E0,

PC =
∫ Ee

0

∫ xmax

0

dPsrc

dE0
× Pin ×

dPint

dx
× Pout dx dE0

=
∫ Ee

0

∫ xmax

0

dI

dE0
e−ρσ(E0)x ρ dσC (E0) dx e−ρσ(ES) x

cos δ dE0 (12)

For pair production, the probability dPint = ρ dσpp (E0) dx where one of
the two resulting photons from the positron annihilation ends up heading in
the direction of the detector. All emerging photons have energy me and it is
assumed that none of the e+ exit the material. The expression for the flux of
photons resulting from pair production is analogously

Ppp =
∫ Ee

0

∫ xmax

0

dI

dE0
e−ρσ(E0)x ρ dσpp (E0) dx e−ρσ(me)

x
cos δ dE0 (13)

Because all the photons resulting from pair production come from the an-
nihilation of the e+, the corresponding spectrum is simply a δ-function at me.
The spectrum for the Compton-scattered photons can be derived by considering

dPC

dE0
=

∫ xmax

0

dI

dE0
e−ρσ(E0)x ρ dσC (E0) dx e−ρσ(ES) x

cos δ (14)

Eq. 3 can be solved to express the energy E0 of the incident photon in terms of
the energy ES of the scattered photon,

E0 =
meES

me − ES (1− cos θS)
(15)

to yield an expression for the spectrum of detected photons,

dPC

dES
=

∫ xmax

0

dI

dE0

dE0

dES
e−ρσ[E0(ES)]x ρ dσC [E0 (ES)] dx e−ρσ(ES) x

cos δ

(16)

The spectrum of photons from a 9 MeV bremsstrahlung source reaching a de-
tector placed at 120◦ to the incident beam is shown for selected elements in Fig.
7.

These calculations are in reality somewhat more complex than what is sug-
gested here: A realistic beam would have some angular size and would interact
with the material inside a voxel of finite volume. This volume must also be
integrated over. The scattering angle θS is in reality a function of where in
this voxel the interaction takes place. If the detector is of finite size, the solid
angle dΩ would need to be integrated over as well. These complications are not
particularly challenging to overcome numerically.
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Figure 7: Spectrum of photons from Compton scattering and from pair pro-
duction. The broad peak at low energies results from Compton scattering.
The sharp peak at 0.511 MeV are the photons produced by the pair pro-
duction process. The calculation underlying this spectrum assumed a 9 MeV
bremsstrahlung source evenly illuminating a 5 cm diameter voxel 2 m away with
a 3 inch diameter detector placed at 120◦ to the incident beam at 2 m from the
voxel.
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Figure 8: Ratio of the flux from pair production to Compton scattering for a 9
MeV bremsstrahlung source and a detector placed at 120◦ to the incident beam.

6 ESTIMATING ATOMIC NUMBER

It can be seen in Fig. 7 that at 120◦ to the incident beam, there is good sepa-
ration between the Compton scattered photons and the photons resulting from
pair production. An estimate of atomic number Z can be made by considering
the ratio of these two fluxes. The ratio of the photon flux from pair production
(Eq. 13) to photons from Compton scattering (Eq. 12) is shown in Fig. 8
(the calculations underlying this plot assumed a 9 MeV bremsstrahlung source
evenly illuminating a 5 cm diameter voxel 2 m away with a 3 inch diameter
detector placed at 120◦ to the incident beam at 2 m from the voxel). Aside
from gases and group 1A alkali metals, this ratio rises monotonically with Z
until roughly Z = 90.

7 FURTHER CONSIDERATIONS

This study has only considered a slab of elemental material in a vacuum. If the
material in question were embedded inside other materials, it is expected that
the direct-shine detector would become necessary to assist in backing out the
effects of those embedding materials.

One important source of photons which has not been considered here is
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bremsstrahlung photons from the Compton scattered electrons and from the
e+e− pair. The direction and energy of the Compton electron are easily deter-
mined; the e+ and e− from pair production could be distributed in 4π. A natural
next step would then be to attempt to estimate the flux from bremsstrahlung
using the formula of Eq. 7 and to then refine the above metric on that basis.
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